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ABSTRACT
To evaluate the potential of Synthetic Aperture Radar
(SAR) for retrieving the Above Ground Biomass (AGB) of
Australian woodlands, preliminary relationships were
established between the biomass (scaled-up from field
measurements using laser scanner) of different
communities (distinguished using Large Scale
Photography) and AIRSAR (POLSAR) data acquired over
a 40 x 60 km woodland area near Injune, central
Queensland, during PACRIM II.    Preliminary analysis
suggest that AGB could be retrieved using SAR, with L-
band VV data being the most suitable if regression
analyses are used.

INTRODUCTION
The research aimed to evaluate the potential of
polarimetric Synthetic Aperture Radar (SAR) for
quantifying the biomass and structural diversity of
woodlands in Queensland, Australia.   Information on
biomass is required to support regional calculation of
carbon budgets and, when combined with structural
information, assist in the sustainable utilisation of forests
and conservation of biodiversity. The PACRIM II mission
presented an ideal opportunity to evaluate this potential
(using AIRSAR) and to assess the potential of future
spaceborne SAR (e.g., the Advanced Land Observing
System (ALOS) Phased Array L-band SAR (PALSAR))
for regionally estimating woodland biomass and structure.

STUDY AREA
The study focused on a 40 x 60 km area of woodland near
Injune, which is located in the Southern Brigalow Belt
(SBB), a biogeographic region of southeast and central
Queensland (Figure 1).  More than 50 % of clearing in
Queensland has occurred in the SBB and has been
attributed largely to the establishment of cattle pasture, the
expansion of the wheat farming and, more recently, the
formation of cotton fields.  Partial clearance of vegetation
has also been commonplace in the pastoral areas and
woody thickening is widespread.  Some areas support
commercial forestry activities.   Due to the complex nature
of land use and management practices, the landscape
consists of a mosaic of cleared fields and forest and
woodland communities in various stages of degradation
and/or regeneration.

Within the Injune study area, the gently undulating country
supports white cypress pine (Callitris glaucophylla) stands
on the sandy hills.  The more alluvial clays in the valleys
are dominated by poplar box (E. populnea), silver-leaved
ironbark (E. melanaphloia) and brigalow (A. harpophylla)
communities.

EXPERIMENTAL DESIGN
A systematic grid of 150 (10 columns and 15 rows) of 150
x 500 m Primary Sampling Units (PSUs) was established
across the 40 x 60 km study area.  Each PSU centre was
located 4 km apart in the north-south and east-west
directions (Figure 1).  All PSUs were divided into 30
Secondary Sampling Units (SSU), 50 x 50 m in dimension
and numbered progressively by row from top left (1) to
bottom right (30).

Figure 1:  The Injune study area and sampling design

On July 14th, 2000, and prior to the field campaign, 1:4000
Large Scale colour stereo aerial Photographs (LSP) were
acquired using a RC20 large format photographic camera.
Global Positioning System (GPS) coordinates were
recorded for each photo principal point to within a nominal
precision of ± 20 m of the absolute location.   The
acquisition was planned such that the 50 ha stereo overlap
for each photo pair was centred on the PSU area. Using the
overlap area of each of the 150 stereo pairs, the main
vegetation types were identified and delineated manually
by a trained photogrammetrist and described in terms of



their species composition, height, cover and disturbance
(Jones et al., 2000).  Using this information, PSUs
representing the main vegetation types and regeneration
stages at Injune were identified.  From these, the PSUs
assigned for subsequent field survey were selected, with
the final selection based on accessibility.

In August, 2000, lidar data (Optech 1020 scanner mounted
in a Bell Jet Ranger helicopter; 1 m spatial resolution,
footprint of 25 cm) and hyperspectral data (Compact
Airborne Spectrographic Imager (CASI), 1 m spatial
resolution, 14 wavebands) were acquired for each of the
150 PSUs.  The Optech 1020 lidar operates within the NIR
spectrum and measures 500 first and last returns and also
the intensity of each return per second.  Lidar data were
acquired at a nominal altitude of 250 m and a swath width
of approximately 200m, a flight configuration that ensured
lidar coverage of each PSU and resulted in a lidar footprint
of < 15 cm and average sampling interval of < 1 m.   A
GPS base station was established during both lidar and
CASI flights to ensure accurate georeferencing of the data.

At the same time as the laser and CASI overflights, field
data were collected from 36 50 x 50 m SSUs located
within 12 of the 150 PSUs such that the main vegetation
types and regeneration stages were represented.   For each
SSU, field data collected included the locations of all trees
> 5 cm diameter (at 130 cm) and their diameter (at 30 and
130 cm), height, crown dimensions and growth stage.
Each tree was identified to species.    Digital photographs
were taken of at least every 10th tree and Foliage Projected
Cover (FPC) was measured at 1 m intervals along three 50
m transect lines.  Following field data collection,
destructive harvesting of the major tree species (Callitris
glaucophylla, Eucalpytus crebra, Eucalpytus populnea,
Acacia harpophylla) across the diameter range was
undertaken to facilitate estimation of the above ground
and, in the case of C. glaucophylla, below ground biomass
components.  The above ground biomass (AGB)
components included leaves and both branches and trunks
divided into discrete size classes (e.g., 1-4 cm, 4-10 cm,
10-20 cm).

On the 3rd September, 2000, the NASA JPL DC-10
acquired four strips (10 x 80 km) of polarimetric SAR
(POLSAR) data across the entire PSU grid.  One strip of
topographic SAR (TOPSAR) and four strips of
hyperspectral MASTER (TERRA-1 MODIS ASTER
simulator) data were also acquired over the 40 x 60 km
study area.   Landsat ETM+ data and ASTER data were
also acquired over the same time period.

PROCESSING STAGES
This section focuses solely on the processing of LSP, lidar
and POLSAR data and the subsequent integration of these
data.

LSP
Photoprints of the LSP were scanned to 600 dpi and then
enlarged to 1:1000 scale to facilitate individual tree
mapping.   Initial rectification was undertaken using the
known locations of principal points and camera
parameters.  Comparisons with the lidar and other datasets
confirmed that rectified LSP were generally accurate to
within ± 20 m without additional registration. The spatial
accuracy of the LSP was, however, refined further by
establishing common Ground Control Points (GCPs) with
the lidar data and performing a polynomial transformation.
Root Mean Square (RMS) errors of < 2 m were obtained.
The polygon linework used initially to delineate the
vegetation communities within each PSU was then
scanned, vectorised and rectified using the same
transformation as the digital imagery.

Lidar
An accurate bare earth Digital Elevation Model (DEM)
was generated for each PSU from the lidar data by
extracting the lowest lidar returns within 10 x 10 m
windows, from which a Triangular Irregular Network
(TIN) was generated.  The resultant TIN was then checked
visually to confirm correct classification of ground returns
and transformed into a 1 m grid using bilinear
interpolation methods.  The height of each lidar vegetation
return was then calculated as the difference between the
elevation of the ground DEM and the elevation of the
vegetation return.

The lidar data were then sliced horizontally to produce
foliage cover surfaces at 5 m height intervals (which
relates to the vertical distribution of foliage).  The 5-m
intervals were chosen as a compromise between
minimising the number of explanatory variables in the
subsequent step-wise regression, adequately describing the
significant structural variability up to 35 m, and including
(in some cases) a small number of large, tall trees which
would have significant impact on biomass at the plot level.
A step-wise linear regression was then undertaken using
the multiple input surfaces against the plot-based estimates
of biomass.  The relationship between the estimates of
biomass generated for each SSU and the proportion of
lidar returns within each height class is shown in Equation
1.
                Y = _1_1 + _2_2 + …+ _6_6 + _    Equation (1)

Where Y = ABG (Mg ha-1) and _n and _n represent the
proportion of lidar vegetation hits for given height classes
and the corresponding regression coefficients respectively
(Table 1).



Table 1:  Height classes for _n variables (proportion of lidar
vegetation hits within height class (m)) and the regression
coefficients (_n) for each height class.

Variable
number

Proportion of lidar
vegetation hits within

height class (m; _)

Regression
coefficient for
height class (_)

1 0.5-5.0 0.168
2 5.0-10.0 1.947
3 10.0-15.0 0.857
4 15.0-20.0 3.589
5 20.0-25.0 19.910
6 25.0-35.0 20.00

The lidar predictions generated a strong linear relationship
with an adjusted r2 of 0.89 and SE of 11.01 Mg ha-1.   As
the ground estimates of biomass were not free of error, the
lidar predictions were plotted back over the field estimates,
revealing that 69 % fell within the 95 % confidence limits
of the data.   A t-test of the two estimates also revealed no
significant difference (P < 0.05) between the lidar and
field-based predictions of biomass.   A 0.25 hectare spatial
resolution estimate of biomass, as predicted using
Equation 1 is shown in Figure 2.   Fully automated
procedures were then applied across all 150 PSUs, thereby
generating 4,500 estimates of total biomass.

Figure 2:  Predictions of total AGB (as generated using
Equation 1) for each of 30 SSU within 1 PSU (with the
backdrop of the stereo aerial photograph.

POLSAR data
The four strips of POLSAR data , consisting of three fully
polarimetric frequencies (C-, L-, and P-bands) for a total
of 12 bands per strip, were provided in 16-look Stokes
matrix format with a pixel spacing of 4.62 m in range and
4.62 m in azimuth.   The incidence angle ranged from 20o

to 60o.   The POLSAR data were synthesized (to intensity
values) within IDL ENVI and slant-to-ground range
corrected (nominal resolution of 4.62 m).   Geometric
correction was performed by establishing common GCPs
between the POLSAR data and a Landsat ETM+ image of

the Injune study area, acquired in September, 2000. This
image was rectified, to a high level of precision, by the
Queensland Department of Natural Resources (QDNR)
Statewide Landcover And Trees Study (SLATS) project to
Universal Transverse Mercator (UTM) coordinates.
Between 100-150 GCPs were established for each
POLSAR strip, generating RMS errors of <10 m.
Geometric correction was achieved using a 3rd order
nearest neighbour polynomial transformation.   The
POLSAR strips were then combined to produce a seamless
mosaic for the Injune area (Figure 3).

Figure 3:  POLSAR mosaic of the Injune study area

Data integration
An ArcInfo coverage representing each of the 4500 SSUs
within the Injune study area was overlain onto the
POLSAR mosaic. The corresponding POLSAR
backscatter values (L and P band, co- and cross-
polarisations) were then extracted for each SSU and
related, by community (determined using LSP), to the
AGB, as estimated using the lidar data.  C-band data were
not extracted, as the data required further processing at
JPL. In this paper  only data associated with 750 of the
4500 SSUs (~ _ POLSAR strip) are presented.



RELATIONSHIPS WITH AGB
Preliminary observations suggest that at both L and P-band
(all polarisations), there is a strong relationship with AGB.
Figures 4 and 5 give examples of this relationship, as
observed using L-band HV and L-band VV.  In the
POLSAR image selected, there were few woodlands with
a biomass of less than 50 Mg ha-1.  For this reason, the
relationship with SAR backscatter can only be inferred for
this biomass range.    However, the results suggest that the
strength of the relationship is greater in the lower biomass
range but weakens in the higher biomass woodlands due to
a diversification of structures and sizes of the woody
components.   Even so, the scatter in the relationship is
indicative of the different structural types.

Figure 4:  Relationship between L-band HV backscatter
and above ground biomass, as estimated for 750 PSU by
using lidar data as input to Equation 1.   The codes are as
follows:  BLI: E. fibrosa ssp. N u b i l a (Blue-leaved
Ironbark); BOK: Allocasuarina luehmannii (Bull Oak);
BRI: E. fibrosa ssp. Fibrosa (Broad-leaved Red Ironbark);
CP- C. glaucophylla  (Cypress Pine); EUS: Eucalyptus sp.
NRI: E. crebra (Narrow-leaved Ironbark); PBX: E .
populnea (Poplar Box) QPM:  E. exserta (Queensland
peppermint) SBA; A. leiocarpa (Smooth Barked Apple);
SLI: E. melanaphloia  (Silver-leaved Ironbark); TDG: E.
dealbata (Tumbledown Gum); WAT:  Acacia sp.  The first
code represents the most dominant species.

The analysis suggests that, for a regression-type analysis,
L-band VV data are perhaps better suited than L-HV for
quantifying woodland biomass as structural differences
between community types are less exaggerated, although
the dynamic range of the data is reduced compared to L-
band HV.

Figure 5:  Relationship between L-band VV backscatter
and AGB.  Refer to Figure 5 for the marker legend.

The main scatter within both relationships can be
attributed to woodlands that are dominated by or include
A. leiocarpa (SBABOKEUS, SBAEUS, TDGCP-SBA,
CP-SBA).   This species is dispersed throughout the
woodlands at Injune and is unique in that mature
individuals are typically much larger than other woodland
species, support expansive crowns and allocate much of
their biomass to branches (Figure 6).
a)

Figure 6:  A. leiocarpa as
observed a) within CASI
data (orange) and b) in the
field.



An unusual distribution in the relationships is also
observed for woodlands co-dominated by C. glaucophylla
and E. dealbata (Tumbledown Gum; CP-TDGEUS).

When only woodlands dominated by C. glaucophylla, E.
melanaphloia and E. populnea are considered, the use of
L-band VV data alone seems viable for retrieving AGB.
Although further investigation is required, prior
classification of woodland types using, for example,
Landsat ETM+, MASTER or ASTER data (acquired in
2000) or Hyperion data (acquired over Injune in 2002),
and subsequent integration of SAR data for estimating the
biomass of the mapped communities may increase the
accuracy of AGB retrieval using regression analyses.

MODELLING SAR BACKSCATTER
The research confirms the potential of SAR data for
retrieving the AGB of woodlands.  However, to improve
the retrieval of AGB, knowledge of how microwaves
interact with different structural and biomass components
(i.e., leaves, branches, trunks) of woodlands is necessary.
An approach is to establish regression relationships
between the biomass of these components and the SAR
backscatter at different wavelengths and polarisations.
This analysis is ongoing and is the subject of forthcoming
papers.  An alternative approach is to simulate microwave
interaction with the woodlands based on knowledge of the
vertical and horizontal distribution of scatterers (as
determined from field measurement) and their moisture
content, which together determine the component biomass
values.

A preliminary investigation into SAR backscatter
simulation has therefore been undertaken by considering
two woodland communities dominated by the species C.
glaucophylla  (Figure 7) and E. populnea (Figure 8)
respectively.

 Figure 8:  Three-dimensional visualisation of C.
glaucophylla-dominated woodland.

FUTURE PROSPECTS

Figure 9: Three-dimensional visualisation of E. populnea-
dominated woodland.

The woodlands differ in that the C.glaucophylla supports a
greater biomass (Figure 4), with most allocated to the
trunk.  The trunks are typically vertical in their orientation
and tree density is relatively high (e.g., 600 trees ha-1).
In contrast, E. populnea supports a lower biomass, with
approximately 40% allocated to the branches.   The
branches are angled at 30 o to 40o from vertical and tree
density is lower (e.g., 300 trees ha-1).

 For each SAR frequency and polarization, an existing
numerical discrete-component forest scattering model
developed at JPL is used to simulate the theoretical radar
backscatter values as functions of various stand
geometrical and moisture variables. To reduce the number
of free variables, allometric relations for each species type
can be used to express various canopy parameters in terms
of others. By carrying out the simulations at many values
within physically acceptable ranges of each parameter (or
technically, variable), parametric families of curves are
generated. Higher-order multlidimensional polynomials
are then fit into these curves, producing closed-form
representations of the complex numerical scattering
process. Estimates of free variables are then obtained
through an algorithm that produces the optimal variable
resulting in the best match between SAR measurements
and the closed form polynomial model.

The above technique is applied first at higher frequencies
(C- and L-bands) to estimate the variables describing the
top layers of the forest canopy (branch-layer component
geometry and moisture). With the top layers characterized,
their contribution to SAR backscatter at lower-frequencies
(P- and L-band a appropriate) is simulated numerically and
subtracted from the total backscatter at those frequencies.
The remaining backscatter values then contain information



about the lower layers of vegetation only, and can be
similarly used to estimate the variables contained in those
layers (such as  trunk diameter and moisture content, and
soil moisture). Note that   this technique enables the
characterization of up to two vegetation layers.
Preliminary results will be shown at  the presentation. If
more vertical segmentation is needed, further model
development and/or more data types, such as
interferometric SAR, may be needed. This approach can
also be extended to include optical data in addition to the
SAR backscatter data through appropriate optical
modeling.

DISCUSSION AND CONCLUSIONS
Although preliminary, the research confirms the potential
of polarimetric SAR for retrieving the AGB of woodlands
in Australia, as suggested previously by Lucas et al.
(2000).   The strength of the relationship is anticipated to
be increased through a) correction for incidence angle
effects, b) improved estimation of AGB and component
biomass from both field data and through integration of
CASI (for species discrimination and tree crown/cluster
delineation) and laser for spatial extrapolation, c) better
understanding of microwave interaction with different
biomass and structural components through observation
and modelling, d) inclusion of AGB data for woodlands <
50 Mg ha-1 and e) integration of optical/hyperspectral data
(e.g., for estimating leaf biomass).

The study indicates that L-band VV data may be most
suited for quantifying AGB through regression analyses,
as backscatter is relatively independent of woodland
structure.   L-band HV data may, however, provide
important information on the structure of forests.  These
observations suggest that the forthcoming ALOS
PALSAR, which will routinely provide L-band
polarimetric data, may be well suited to quantifying the
AGB of woodlands in Queensland and in other regions of
Australia.  Even so, prior classifications of woodland types
generated using optical/hyperspectral data, may be
important in refining the estimates of biomass. Although
these types of simplified regression-based retrievals are
important in obtaining a rough estimate of biomass values,
more accurate and reliable estimates are obtained only
through more analytical techniques that relate SAR
backscatter to fundamental scattering properties of forest
stands from which component biomass values can be
calculated.
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